

Welcome to SQLAlchemy Model Factory’s documentation!

Contents:

	Quickstart
	Installation

	Usage

	Testing (Pytest)
	Pytest

	Factories
	Basic

	General Use Functions

	Sources of Uniqueness

	Fluency

	Declarative
	Conversion from @register_at

	Options
	Factory-level Options

	Call-level Options

	API
	Declarative

	Factory Utilities

	Pytest Plugin

Indices and tables

	Index

	Module Index

	Search Page

Quickstart

[image: Actions Status]
 [https://github.com/dancardin/sqlalchemy-model-factory/actions][image: codecov]
 [https://codecov.io/gh/DanCardin/sqlalchemy-model-factory][image: Documentation Status]
 [https://sqlalchemy-model-factory.readthedocs.io/en/latest/?badge=latest]sqlalchemy-model-factory aims to make it easy to write factory functions for sqlalchemy
models, particularly for use in testing.

It should make it easy to define as many factories as you might want, with as little
boilerplate as possible, while remaining as unopinionated as possible about the behavior
going in your factories.

Installation

pip install sqlalchemy-model-factory

Usage

Suppose you’ve defined a Widget model, and for example you want to test some API code
that queries for Widget instances. Couple of factory functions might look like so:

tests/test_example_which_uses_pytest
from sqlalchemy_model_factory import autoincrement, register_at
from . import models

@register_at('widget')
def new_widget(name, weight, color, size, **etc):
 """My goal is to allow you to specify *all* the options a widget might require.
 """
 return Widget(name, weight, color, size, **etc)

@register_at('widget', name='default')
@autoincrement
def new_default_widget(autoincrement=1):
 """My goal is to give you a widget with as little input as possible.
 """
 # I'm gonna call the other factory function...because i can!
 return new_widget(
 f'default_name{autoincrement}',
 weight=autoincrement,
 color='rgb({0}, {0}, {0})'.format(autoincrement),
 size=autoincrement,
)

What this does, is register those functions to the registry of factory functions, within
the “widget” namespace, at the name (defaults to new) location in the namespace.

So when I go to write a test, all I need to do is accept the mf fixture (and lets say
a session db connection fixture to make assertions against) and I can call all the
factories that have been registered.

def test_example_model(mf, session):
 widget1 = mf.widget.new('name', 1, 'rgb(0, 0, 0)', 1)
 widget2 = mf.widget.default()
 widget3 = mf.widget.default()
 widget4 = mf.widget.default()

 widgets = session.query(Widget).all()
 assert len(widgets) == 4
 assert widgets[0].name == 'name'
 assert widgets[1].id == widget2.id
 assert widgets[2].name == widget3.name
 assert widgets[3].color == 'rgb(3, 3, 3)'

In a simple toy example, where you don’t gain much on the calls themselves the benefits
are primarily:

	The instances are automatically put into the database and cleaned up after the test.

	You can make assertions without hardcoding the values, because you get back a handle on the object.

But as the graph of models required to set up a particular scenario grows:

	You can define factories as complex as you want

	They can create related objects and assign them to relationships

	They can be given sources of randomness or uniqueness to not violate constraints

	They can compose with eachother (when called normally, they’re the same as the original function).

Testing

A (or maybe the) primary usecase for this package is is in writing test tests
concisely, ergonmically, and readably.

To that end, we integrate with the testing framework in order to provide good UX in your
tests.

Pytest

We provide default implementations of a couple of pytest fixtures: mf_engine,
mf_session, and mf_config. However this assumes you’re okay running your code as though it’s
executed in SQLite, and with default session parameters.

If your system will work under those conditions, great! Simply go on and use the mf fixture
which gives you a handle on a ModelFactory

from sqlalchemy_model_factory import registry

@registry.register_at('foo')
def new_foo():
 return Foo()

def test_foo(mf):
 foo = mf.foo.new()
 assert isinstance(foo, Foo)

If, however, you make use of feature not available in SQLite, you may need a handle on a real
database engine. Supposing you’ve got a postgres database available at db:5432, you can
put the following into your tests/conftest.py.

import pytest
from sqlalchemy import create_engine

@pytest.fixture
def mf_engine():
 return create_engine('psycopg2+postgresql://db:5432')

now the `mf` fixture should work

Furthermore, if your application works in a context where you assume your session has
particular options set, you can similarly plug in your own session.

import pytest
from sqlalchemy.orm.session import sessionmaker

@pytest.fixture
def mf_session(mf_engine):
 Session = sessionmaker() # Set your options
 return Session(bind=engine)

now the `mf` fixture should work

Finally, there are a set of hooks through which you can configure the behavior of the ModelFactory
itself through the mf_config fixture. If defined, this fixture should return a dict,
the contents of which would be the config options available.

Below is defined, the equivalent of a maximally defined mf_config fixture with all the
values set to their defaults. Note That as a user, you only need to include options which
you want overridden from their defaults.

@pytest.fixture
def mf_config():
 return {
 # Whether the calling of all factory functions should commit, or just flush.
 "commit": True,

 # Whether the actions performed by the model-factory should attempt to revert. Certain
 # test circumstances (like complex relationships, or direct sql `execute` calls might
 # mean cleanup will fail an otherwise valid test.
 "cleanup": True,
 }

Factories

Basic

So the most basic factories that you can write are just functions which return models.

from sqlalchemy_model_factory import register_at

@register_at('foo')
def new_foo():
 return Foo()

def test_foo(mf):
 foo = mf.foo.new()
 assert isinstance(foo, Foo)

Nested

Note, you can also create nested models through relationships and whatnot; and that will all work
normally.

from sqlalchemy_model_factory import register_at

class Foo(Base):
 ...

 bar = relationship('Bar')

class Bar(Base):
 ...

 baz = relationship('Baz')

@register_at('foo')
def new_foo():
 ...

General Use Functions

In some cases, you’ll have a a function already handy that returns the equivalent signature
of a model (or you just want a function that returns the signature).

In this case, your function will act as the originally defined function when called normally,
however when invoked in the context of the ModelFactory, it returns the specified model
instance.

from sqlalchemy_model_factory import for_model, register_at

@register_at('foo')
@for_model(Foo)
def new_foo():
 return {'id': 1, 'name': 'bar'}

def test_foo(mf):
 foo = mf.foo.new()
 assert foo.id == 1
 assert foo.name == 'bar'

 raw_foo = new_foo()
 assert raw_foo == {'id': 1, 'name': 'bar'}

Sources of Uniqueness

Suppose you’ve got a column defined with a constraint, like
name = Column(types.Integer(), unique=True).

Suddenly you’ll need to parametrize your factory to accept a name param. However if you
actually don’t care about the specific name values, you have a few options.

Autoincrement

Automatically incrementing number values is one option. Your factory will be automatically
supplied with an autoincrement parameter, known to not collide with previously
generated values.

from sqlalchemy_model_factory import autoincrement, register_at

@register_at('foo')
@autoincrement
def new_foo(autoincrement=1):
 return Foo(name=f'name{autoincrement}')

def test_foo(mf):
 assert mf.foo.new().name == 'name1'
 assert mf.foo.new().name == 'name2'
 assert mf.foo.new().name == 'name3'

Fluency

You’ve been working along and writing factories and you finally find yourself in a situation like
this.

@register_at('foo')
@autoincrement
def new_foo(name='name', height=2, width=3, depth=3, category='foo', autoincrement=1):
 ...

And in the event your test requires a number of identical parameters across multiple calls, you
might end up with test code that looks like.

def test_foo(mf):
 width_4 = mf.foo.new(height=3, category='bar', width=4)
 width_5 = mf.foo.new(height=3, category='bar', width=5)
 width_6 = mf.foo.new(height=3, category='bar', width=6)
 width_7 = mf.foo.new(height=3, category='bar', width=7)
 ...

The above (as a dirt simple example, that might be easily solved in different ways) has got most
of its information duplicated unnecessarily.

The “fluent” decorator

A simple solution to this general problem category is the fluent decorator. Which adapts a
given callable to be able to be called in a fluent style.

def test_foo(mf):
 bar_type_foo = mf.foo.new(3).category('bar')

 width_4 = bar_type_foo.width(4).bind()
 width_5 = bar_type_foo.width(5).bind()
 width_6 = bar_type_foo.width(6).bind()
 width_7 = bar_type_foo.width(7).bind()

Now in this particular case, you could have just done a for-loop over the original set of calls,
or maybe functools.partial could have sufficed, but the fluent pattern is more generally
useful than just in cases like this.

Also from the callee’s perspective, there’s not necessarily any requirement that all the args have
their parameter names supplied, so you might end up reading foo.new('a', 3, 4, 5, 'ro'),
which is arguably far less readable.

To note, the bind call at the end of each expression above is necessary to let the fluent
calls know that its done being called (because as you might notice, we didn’t call all the available
methods we could have called). But this also serves as a convenient point at which to add custom
behaviors. (for example you could supply .bind(call_after=print) to have it print out the final
result of the function; see the api portion of the docs for the full set of options.)

Class-style factories

From the perspective of the model factory, all factory “functions” are just callables, so you can
always manually mimic something like the above fluent decorator in a class so that you can
implement your own custom behavior for each option.

@register_at('foo')
class NewFoo:
 def __init__(self, **kwargs):
 self.kwargs

 def name(self, name):
 self.__class__(**self.kwargs, name=name)

 def width(self, width):
 self.__class__(**self.kwargs, width=width)

 def bind(self):
 return Foo(**self.kwargs)

Albeit, with the above, very naive implementation, your test code would end up looking like

def test_foo(mf):
 bar_foo = mf.foo.new().name('bar')
 width_4 = bar_fo.width(4).bind()
 width_5 = bar_fo.width(5).bind()

Declarative API

There are a few benefits to declaratively specifying the factory function tree:

	The vanilla @register_at decorator is dynamic and string based, which
leaves no direct import or path to trace back to the implementing function
from a ModelFactory instance.

	There is, perhaps, an alternative declarative implementation which ensures
the yielded ModelFactory literally is the heirarchy specified.

	As is, if you’re in a context in which you can type annotate the model
factory, then this enables typical LSP features like “Go to Definition”.

In the most common cases, such as with pytest, you’ll be being handed
an untyped mf (model_factory) fixture instance. Here, you can
type annotate the argument as being your @declarative ly decorated
class.

some_module.py
class other:
 def new():
 ...

factory.py
from some_module import other

@declarative
class ModelFactory:
 other = other

 class namespace:
 def example():
 ...

tests.py
from sqlalchemy_model_factory.pytest import create_registry_fixture
from factory import ModelFactory

mf_registry = create_registry_fixture(ModelFactory)

`mf` being a sqlalchemy_model_factory-provided fixture.
def test_factory(mf: ModelFactory):
 ...

Alternatively, a registry can be provided to the decorator directly,
ou have one pre-constructed.

registry = Registry()

@declarative(registry=registry)
class ModelFactory:
 def fn():
 ...

Note

interior classes to the decorator, including both the root class, as
well as any nested class or attributes which are raw types, will be
instantiated. This is notable, primarily in the event that an __init__
is defined on the class for whatever reason. Each class will be instantiated
once without arguments.

Conversion from @register_at

If you have an existing body of model-factory functions registered using the
@register_at pattern, you can incrementally adopt (and therefore incrementally
get viable type hinting support) the declarative api.

If you are importing from sqlalchemy_model_factory import register_at, today,
you can import from sqlalchemy_model_factory import registry, and send that
into the @declarative decorator:

from sqlalchemy_model_factory import registry

@declarative(registry=registry)
class ModelFactory:
 def example():
 ...

Alternatively, you can switch to manually constructing your own Registry,
though you will need to change your @register_at calls to use it!

from sqlalchemy_model_factory import Registry, declarative

registry = Registry()

@register_at("path", name="new")
def new_path():
 ...

@declarative(registry=registry)
class Base:
 def example():
 ...

Then once you make use of the annotation, say in some test:

def test_path(mf: Base):
 mf.example()

you should get go-to-definition and hinting support for the declaratively specified
methods only.

Note

You might see mypy type errors like Type[...] has no attribute "..."
for @register_at. You can either ignore these, or else apply the
compat as a superclass to your declarative:

from sqlalchemy_model_factory import declarative

@declarative.declarative
class Factory(declarative.compat):
 ...

Options

Factory-level Options

Options can be supplied to register_at at the factory level to alter
the default behavior when calling a factory.

Factory-level options include:

	commit: True/False (default True)

Whether the given factory should commit the models it produces.

	merge: True/False (default False)

Whether the given factory should Session.add the models
it produces, or Session.merge them.

This option can be useful for obtaining a reference to some model you
know is already in the database, but you dont currently have a handle on.

For example:

@register_at("widget", name="default", merge=True)
def default_widget():
 return Widget()

Call-level Options

All options available at the factory-level can also be provided at the call-site
when calling the factories, although their arguments are postfixed with a
trailing _ to avoid colliding with normal factory arguments.

def test_widget(mf):
 widget = mf.widget.default(merge_=True, commit_=True)

API

Declarative

	
class sqlalchemy_model_factory.declarative.DeclarativeMF

	Provide an alternative to the class decorator for declarative base factories.

Today there’s no meaningful difference between the decorator and the subclass
method, except the interface.

Examples

>>> class ModelFactory(DeclarativeMF):
... def default(id: int = None):
... return Foo(id=id)

or

>>> registry = Registry()
>>>
>>> class ModelFactory(DeclarativeMF, registry=registry):
... def default(id: int = None):
... return Foo(id=id)

	
sqlalchemy_model_factory.declarative.declarative(_cls=None, *, registry=None)

	Decorate a base object on which factory functions reside.

The primary benefit of declaratively specifying the factory function tree
is that it enables references to the factory to be type aware, enabling
things like “Go to Definition”.

Note interior classes to the decorator, including both the root class, as
well as any nested class or attributes which are raw types, will be
instantiated. This is notable, primarily in the event that an __init__
is defined on the class for whatever reason. Each class will be instantiated
once without arguments.

Examples

>>> @declarative
... class ModelFactory:
... class namespace:
... def fn():
... ...

>>> from sqlalchemy_model_factory.pytest import create_registry_fixture
>>> mf_registry = create_registry_fixture(ModelFactory)

>>> def test_factory(mf: ModelFactory):
... ...

Alternatively, a registry can be provided to the decorator directly,
if you have one pre-constructed.

>>> registry = Registry()
>>>
>>> @declarative(registry=registry)
... class ModelFactory:
... def fn():
... ...

Note due to the dynamic nature of fixtures, you must annotate the fixture
argument to have the type of the root, declarative class.

Factory Utilities

	
sqlalchemy_model_factory.utils.autoincrement(fn=None, *, start=1)

	Decorate registered callables to provide them with a source of uniqueness.

	Parameters

	
	fn (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable]]) – The callable

	start (int [https://docs.python.org/3/library/functions.html#int]) – The starting number of the sequence to generate

Examples

>>> @autoincrement
... def new(autoincrement=1):
... return autoincrement
>>> new()
1
>>> new()
2

>>> @autoincrement(start=4)
... def new(autoincrement=1):
... return autoincrement
>>> new()
4
>>> new()
5

	
class sqlalchemy_model_factory.utils.fluent(fn, signature=None, pending_args=None)

	Decorate a function with fluent to enable it to be called in a “fluent” style.

Examples

>>> @fluent
... def foo(a, b=None, *args, c=3, **kwargs):
... print(f'(a={a}, b={b}, c={c}, args={args}, kwargs={kwargs})')

>>> foo.kwargs(much=True, surprise='wow').a(4).bind()
(a=4, b=None, c=3, args=(), kwargs={'much': True, 'surprise': 'wow'})

>>> foo.args(True, 'wow').a(5).bind()
(a=5, b=None, c=3, args=(True, 'wow'), kwargs={})

>>> partial = foo.a(1)
>>> partial.b(5).bind()
(a=1, b=5, c=3, args=(), kwargs={})

>>> partial.b(6).bind()
(a=1, b=6, c=3, args=(), kwargs={})

	
bind(*, call_before=None, call_after=None)

	Finalize the call chain for a fluently called factory.

	Parameters

	
	call_before (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable]]) – When provided, calls the given callable, supplying the args and kwargs
being sent into the factory function before actually calling it. If the call_before
function returns anything, the 2-tuple of (args, kwargs) will be replaced with the
ones passed into the call_before function.

	call_after (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable]]) – When provided, calls the given callable, supplying the result of the factory
function call after having called it. If the call_after function returns anything,
the result of call_after will be replaced with the result of the factory function.

	
sqlalchemy_model_factory.utils.for_model(typ)

	Decorate a factory that returns a Mapping type in order to coerce it into the typ.

This decorator is only invoked in the context of model factory usage. The intent is that
a factory function could be more generally useful, such as to create API inputs, that
also happen to correspond to the creation of a model when invoked during a test.

Examples

>>> class Model:
... def __init__(self, **kwargs):
... self.kw = kwargs
...
... def __repr__(self):
... return f"Model(a={self.kw['a']}, b={self.kw['b']}, c={self.kw['c']})"

>>> @for_model(Model)
... def new_model(a, b, c):
... return {'a': a, 'b': b, 'c': c}

>>> new_model(1, 2, 3)
{'a': 1, 'b': 2, 'c': 3}
>>> new_model.for_model(1, 2, 3)
Model(a=1, b=2, c=3)

Pytest Plugin

A pytest plugin as a simplified way to use the ModelFactory.

General usage requires the user to define either a mf_engine or a mf_session fixture.
Once defined, they can have their tests depend on the exposed mf fixture, which should
give them access to any factory functions on which they’ve called register_at.

	
sqlalchemy_model_factory.pytest.mf(mf_registry, mf_session, mf_config)

	Define a fixture for use of the ModelFactory in tests.

	
sqlalchemy_model_factory.pytest.mf_config()

	Define a default fixture in for the model factory configuration.

	
sqlalchemy_model_factory.pytest.mf_engine()

	Define a default fixture in for the database engine.

	
sqlalchemy_model_factory.pytest.mf_registry()

	Define a default fixture for the general case where the default registry is used.

	
sqlalchemy_model_factory.pytest.mf_session(mf_engine)

	Define a default fixture in for the session, in case the user defines only mf_engine.

	
class sqlalchemy_model_factory.pytest.pytest

	Guard against pytest not being installed.

The below function will simply act as a normal function if pytest is not installed.

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 sqlalchemy_model_factory	

 	
 	
 sqlalchemy_model_factory.declarative	

 	
 	
 sqlalchemy_model_factory.pytest	

 	
 	
 sqlalchemy_model_factory.utils	

Index

 A
 | B
 | D
 | F
 | M
 | P
 | S

A

 	
 	autoincrement() (in module sqlalchemy_model_factory.utils)

B

 	
 	bind() (sqlalchemy_model_factory.utils.fluent method)

D

 	
 	declarative() (in module sqlalchemy_model_factory.declarative)

 	
 	DeclarativeMF (class in sqlalchemy_model_factory.declarative)

F

 	
 	fluent (class in sqlalchemy_model_factory.utils)

 	
 	for_model() (in module sqlalchemy_model_factory.utils)

M

 	
 	mf() (in module sqlalchemy_model_factory.pytest)

 	mf_config() (in module sqlalchemy_model_factory.pytest)

 	mf_engine() (in module sqlalchemy_model_factory.pytest)

 	mf_registry() (in module sqlalchemy_model_factory.pytest)

 	mf_session() (in module sqlalchemy_model_factory.pytest)

 	
 	
 module

 	sqlalchemy_model_factory

 	sqlalchemy_model_factory.declarative

 	sqlalchemy_model_factory.pytest

 	sqlalchemy_model_factory.utils

P

 	
 	pytest (class in sqlalchemy_model_factory.pytest)

S

 	
 	
 sqlalchemy_model_factory

 	module

 	
 sqlalchemy_model_factory.declarative

 	module

 	
 	
 sqlalchemy_model_factory.pytest

 	module

 	
 sqlalchemy_model_factory.utils

 	module

 nav.xhtml

 Table of Contents

 		
 Welcome to SQLAlchemy Model Factory’s documentation!

 		
 Quickstart

 		
 Installation

 		
 Usage

 		
 Testing (Pytest)

 		
 Pytest

 		
 Factories

 		
 Basic

 		
 Nested

 		
 General Use Functions

 		
 Sources of Uniqueness

 		
 Autoincrement

 		
 Fluency

 		
 The “fluent” decorator

 		
 Class-style factories

 		
 Declarative

 		
 Conversion from @register_at

 		
 Options

 		
 Factory-level Options

 		
 Call-level Options

 		
 API

 		
 Declarative

 		
 DeclarativeMF

 		
 declarative()

 		
 Factory Utilities

 		
 autoincrement()

 		
 fluent

 		
 for_model()

 		
 Pytest Plugin

 		
 mf()

 		
 mf_config()

 		
 mf_engine()

 		
 mf_registry()

 		
 mf_session()

 		
 pytest

_static/plus.png

_static/file.png

_static/minus.png

